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Summary

It is shown that a compressible elastic body —not necessarily homo-
geneous or isotropic —is hyperelastic provided the work done by all external
forces acting on an arbitrary part of the body vanishes for every sufficiently
smooth cyclic motion, in which each material point returns to its initial

position with a velocity equal to its initial velocity.

Introduction

Adhering to the terminology of Truesdell and Noll [1], we consider a
body composed of a—possibly non-homogeneous —compressible elastic
material (simple material without memory) in the context of the purely

mechanical theory of continuous media. If such a material is hyperelastic,

and thus possesses a stored-energy function (elastic potential), it is seen
at once from the power-identity appropriate to dynamical processes in
continuum mechanics that the total work done by the actual surface tractions
and body forces external with respect to an essentially arbitrary part of the

body vanishes over any ''cyclic motion'. The latter term connotes a suitably

*The results communicated in this paper were obtained in the course of an
investigation supported by Contract NO0014-75-C-0196 with the Office of
Naval Research in Washington, D.C.
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regular motion in which the initial and terminal positions of the body, as
well as the initial and final velocity fields, are coincident. It is the aim of
the present paper to establish a converse of this proposition. Specifically,
we seek to show that the vanishing of the work done by all external forces

acting on an arbitrary portion of a not necessarily homogeneous elastic body

in any cyclic motion is also sufficient for the existence of an elastic potential.
In proving this claim we are incidentally led to a rather simple explicit integral
representation for the stored-energy function of a hyperelastic material.

It should be made clear how the present result differs in its purpose
and underlying hypotheses from a related result that is an immediate conse-
quence of the first work theorem introduced by Truesdell and Noll in Article 83

of [1]. In this theorem the authors of [1] confine their attention to homogeneous

elastic bodies. They consider a suitably smooth one-parameter family of

homogeneous deformations, and deal with the work done by the actual surface

tractions alone during such a "homogeneous deformation process''. Their

conclusions, which follow from familiar properties of line integrals applied
to paths in the space of second-order tensors, in particular justify the
following assertion: a homogeneous elastic body is hyperelastic if and only

if the traction-work vanishes over any homogeneous deformation process that
is closed in the sense of starting from and terminating in the same position
of the body. The power-identity mentioned earlier, or indeed the equation

of motion, play no role in the setting of the work theorem to which we are
referring. Further, no condition analogous to the required coincidence of
the initial and terminal velocity fields in a cyclic motion needs to be imposed.
The inevitable presence of this velocity condition among the hypotheses of the

present theorem, is a source of analytical complications.
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1. Notation and other preliminaries.

In this section we explain the notation used in what follows and
assemble various continuum-mechanical ingredientsl that will be needed in
the subsequent analysis.

Throughout the present paper € stands for a three-dimensional
Euclidean point-space (reference space). £ is the space of all nonsingular
second-order tensors, while £+ and £ denote the set of all second-order
tensors with positive or negative determinant, respectively. Next,./ is the
space of all symmetric tensors of the second order andjthe set of all such

tensors that are positive definite. Finally, & stands for the collection of

all orthogonal second-order tensors.

Letters in boldface denote tensors of positive order in three
dimensions. Further, if y is a vector and T a tensor of order two, the same
symbols will also be employed — in the appropriate context — to denote the
column matrix [Vi] and the square matrix [Tij] of scalar components of v
and T in the underlying orthogonal cartesian coordinate frame. Here and
in the sequel Latin subscripts are understood to range over the integers
(1,2,3). Summation over repeated subscripts is taken for granted.

Let B be a body which in an arbitrary fixed reference configuration
occupies a closed region R (reference region) in €. A motion of 8 is a

one-parameter family of mappings of ® into €,

=YX t)=x +u(x,t) ¥ x€R (t Stst)) , (1.1)

1

See [1], as well as Truesdell and Toupin [2], ir. connection with this
expository summary of prerequisites.
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depending on the time t as parameter, u(+,t) being the instantaneous
displacement field. The position vector x of a point in R may be regarded
as a particle label; thus x; are material and Y; spatial coordinates. A

motion of B will be called an admissible motion, provided y satisfies the

following regularity requirements:
M gect@xt, .t )
28 o’ 1 i
i.e., y is twice continuously differentiable on its domain of deﬁniti.on;l
(ii) y(+,t) is one-to-one on R V¥ tE[to,tl] ,

so that if X(+,t) is the inverse of the mapping 2(-,t), one has

JE(y,t),t) =y ¥ yER, =¥(R,t) (t_St<t)) ; (1.2)

A 1

(iii) X(+,t)€C (Rt) v tE[to,tl] .

The particle velocity and acceleration relative to € associated with

an admissible motion of @ are defined by
. & 2
X(,%: t) 22(?5» t) , 23(?5, t) =2‘(?£' t)v ?E‘ER (toStStl) (1.3)
and we adopt the notation

E(Z‘: t) =1(£(Z: t),t) E(X’ t) =g(?3(1! t),t) v Xent (toststl) (1. 4)

for the spatial velocity and acceleration fields. By a cyclic motion of 8

we mean an admissible motion subject to the conditions

lIf A and B are sets, we write AxB for the cartesian product of A and B.

ZA dot placed above a functional symbol indicates differentiation with
respect to the time.




yxt) =yx,t), V(X,t ) =v(x,t)) vV x€ER . (1.5)

Finally, we call F and J the deformation-gradient field and the Jacobian

determinant (relative to R) of an admissible motion, whence
F=v§=[§, ;], J=detF#0 on fxt_,t,] . (1.6)"
~ ~ ].,J ~ (o]

Let pOGC(R) and p(-,t)GC(Rt) (toststl), respectively, designate the

mass density per unit reference volume and per unit current volume of a

body # undergoing an admissible motion. In accordance with the postulate

of mass balance

Po®) = 1365 1) o(gx, 1), 0) v (x, )€Rx[t ,t,] . (1.7)

Further, suppose that l(-,t)Ecl(Rt) (toststl) is the actual (Cauchy)

stress-tensor field induced by such a motion. If € is a Newtonian reference

space, the principles of linear and angular momentum then imply the

equation of motion

d;'vl(z, t) +2(x: t) = p(z: ”E‘X' t)
& (1.8)°

T(y,t) =lT(}:.t) v yER, (t_stst)) ,

in which b(-,t)GC(Rt) is the instantaneous actual body-force density per unit

current volume. The asscciated instantaneous nominal (Piola) stress

field g(+,t), relative to the chosen reference configuration and regarded as

1Subsc‘:ripts preceded by a comma signify partial differentiation with respect
to the corresponding cartesian coordinate.

ZA superscript T always indicates transposition.




a function of position on R, is defined by

o, t) = [365,6) [ 7Gx, 0, O[E Tx, 0] v xer e stst)) . (19!
Thus, 0(°,t)€CI(R) (toStStl) and (1. 8), in view of (1. 7), are found to be
equivalent to
d;-‘vg(?s: t) +,g?5’ t) = po(?é)’%(”s, t) ,
44 (1.10)
T a0
2(?5» t),l‘: (35: t) =E(?5: t)g (?5: t) V,{SER (toststl) »
where
f(x,t) =J(x, t)b(;’(x; t),t) v x€R (toststl) (1.11)
is the nominal body-force density per unit reference volume.

If S is an oriented regular surface element2 and St =y(S,t) its
instantaneous motion image, while N(x) ¥ x€S and n(y,t) v yESt (toststl)
are the corresponding unit normal vectors, one has the traction-stress
relations

2%, t) =g(x, IN(X) v XES (¢ stst, ) ,
(1.12)

Hy,t) =7(y,tin(y,t) v y€s, (t st<t)) ,

where 8(+,t) is the instantaneous nominal traction vector field on S and

1Ii: should be emphasized that while T(+,t) is independent of the choice of
the reference configuration, o(+,t)1s not. Since we deal here with but a
single fixed reference configuration, we refrain from making this de-
pendence explicit in the notation used for the nominal stress field.

% This term is to be interpreted in the sense of Kellogg [3].




£(e+,t) the instantaneous actual traction field on St' Moreover,

~

_[3(35. t)dAx=ng. t)dAY (t stst)) . (1.13)
S St
Consider now an admissible motion y(+,t) on R (toststl) of a body
B, let € be a regular su.bregionl of the region R occupied by 8 in the
reference configuration and let 9t=2(9, t) (toststl). Next, define the power

(rate of work) of the actual body forces and surface tractions acting on the

part of B that occupies € in the reference configuration through

re(t) =IR(Z,t) -z(x, t)dVy+ ‘[,E,(Z,’t) -’\\r’(‘}:’,t)dAy (toStStl) s (1.14)
01: ~ 89t =

Then the second of (1.12), together with (1. 8) and the divergence theorem,

readily yield the familiar power identity, valid for tc‘stst1 »

~

= d (1 =2 2
rol®) = [ 10,0 g3y, 04V e [ 2oy 0P uvav, . (1.19)
17
t

Qt i

The first volume integral in (1. 15) is the ""stress power'', the second the

kinetic energy associated with Qt. From (l.14), with the aid of (1.4), (1.9),

(1.11), and (1.12), follows the alternative representation of ro(t), in terms

of the nominal body-force density and surface traction,

1The term ''regular region'' is employed in the sense of Kellogg [3]. Note,
in particular, that € is necessarily a bounded closed region to which the
divergence theorem applies.

Zlfé and B are second-order tensors, we write A+B for the inner product
tr(ATB)=A,.B...
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r,(t) =J f(x,t) o v(x, t)dvx+fg(,§. t) ev(x, t)dA_ (toststl) : (1.16)
@ ~ 9@ i

Similarly, (1.4), (1.7), (1.9) enable one to deduce the following alternative

representations for the stress power and the kinetic energy:

Jl(z, t) -iz(z, t)dVy =J.3,(i‘,’ t)-y{z(i:‘, t)de (toststl) > {117}
@ T e v o

t

1 =2 1 2
[3eq. o7, 0av = [3o e nav, sty 1)
Qt G 2

We turn now to the constitutive law and in this connection limit our

attention to a body 8 composed of an elastic material (simple :»aterial without

memory). Accordingly, we assume there is an actual stress-response

function g(+,x), defined on £ for every x€R and having values iny/ , such that

for every admissible motion of 8,
TFx,1),t) =g(F(x, t);x) ¥ X€R (t_stst) . (1.19)

Moreover, consistent with our previous agreement regarding the smoothness
of the actual stress field T(+,t), we suppose henceforth that gECl(SxR). The
dependence of g(+;x) upon x allows for the possible non-homogeneity of the

material, as far as its stress response is concerned. On defining an

associated nominal stress-response function h(+,X) by means of




h(F;x) = |det F |g(F;x)(F 1)L v (F,x)€SxR , (1.20)
one draws from the assumed symmetry of g(F;x) that
o T
h(E;x)F " =Fh™(E;x) ¥ (F,%)€XR . (1.21)

Further, (1.19), (1.20), and (l.9) assure that the constitutive law for an

elastic body 8 may also be written as

3(5, t) =g(§(’§. t);x) v Z‘,ER (toststl) > (1.22)

which must hold true for every admissible motion of 8. Because of the
stipulated smoothness of g, evidently hECl(SxQ). ‘

At this stage we recall the definition of a hyperelastic material

(''conservative' simple material without memory). We shall say that 8
is a hyperelastic body if 8 is elastic and there exists a scalar-valued

function W(-;gs), defined on £ for every Z‘,ER' such that Wécz(SxR) and
B(F;x) = WL(E:%) ¥ (E,X)€IxR (1.23)
or, equivalently,

hij(,]j‘;gs) = 8W(§;§)/8Fij v (E,X)€EEXR . (1.24)

Here W is the stored-energy function (elastic potential), which represents
the strain-energy density per unit reference volume. The space £ consists

of the two disjoint domains £, and £_, which are separated by the set of all

lNote that here F denotes an arbitrary nonsingular second-order tensor,

rather than the Tunction of position and time representing the deformation-
gradient tensor field of an admissible motion.
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second-order tensors with a vanishing determinant. In order to render
W unique for a hyperelastic body with a given nominal stress-response

function h, we adopt the convenient normalization

W(Lix) =W(-Lix) =0 ¥ x€R . (1.25)"

)
By virtue of (1.17), (1.23) and (1.1), (1.3), (1.6), the stress-power

in an admissible motion of a hyperelastic body is given by

7 -_Ei_j :
[rr.0 gT DAV =5 [ WIE G, 0:0aV, (¢ stst)) (1.26)

the integral on the right being the total strain-energy stored in the region
Qt. Thus, and on account of (1. 18), the power-identity (1. 15) in the present

circumstances takes the form

i d h i f‘l 2 \
o) =g | WEGS 0300V + e [ 70,008 (6 04V, (¢ sest) . (1.27)
@ Z

We conclude this compilation of prerequisites by citing certain

implications of the principle of material frame indifference (objectivity).

In what follows let Q be an arbitrary orthogonal second-order tensor.
Necessary and sufficient for the objectivity of the constitutive law appropriate

to an elastic body is that

g(QFx) =Qg(Fix)Q" v (F,x)€8xR (1.28)

or alternatively,

1Here and in the sequal 1 is the idem tensor.
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h(QF;x) =Qh(F;x) v (F,x)€ELXR . (1.29)

~

On the other hand, for a hyperelastic body one has
W(QE;x) =W(E;x) v (E,X)€ExR (1. 30)

provided the normalization (1. 25) is in force, as has been assumed already.

Suppose, finally,
+
E€L, F=RU, R€& , Ued , (1.31)

so that R and U are the orthogonal and the symmetric positive-definite
factorsinthe unique right polar decomposition of the nonsingular tensor
E. Thus,

RR'=1, R=R(E)=EU"", y=y@ = [ET

~~

3 (1.32)

Moreover, (1.28), (1.29), (1.30) yield the well-known conclusions:

g(F;x) =Rg(U;§)5Tv (F,x)€EXR , (1.33)
h(E;x) =Rh(U;x) v (E,X)€LxR , (1. 34)
W(E;x) =W(U;x) ¥ (E,X)€SXR . (1.35)

2. A work theorem for hyperelastic bodies.

With our present purpose in mind, we first recall a familiar
property of hyperelastic materials.

Theorem 1. Let B be a hyperelastic body. Then the work




k)

w0=Jr0(t)dt=0 (2.1)

t
b o

for every cyclic motion of 8 and for every regular subregion & of the region

R occupied by B in the reference configuration. Moreover, if h is the nomi-

nal stress-response function of 8, then

curl h(F;x) =0 v (E,x)€EXR (2.2)
F
or, equivalently,
1
oh..(F;x)/9F_ _=0h ;X)/9F.. v (F, Y . 2.3
1J(~ 35)/ Pq pq(ﬁF-: x)/ FlJ (E,x)€ixR ( )

The conclusion (2. 1) is immediate from the power-identity (1. 27)
for hyperelastic bodies together with (1. 5), (1.6), while (2. 3) follows at
once from (1. 24) and the assumed smoothness of the elastic potential W,

We now state and prove the following converse of Theorem 1, which constitutes

our main objective.

Theorem 2. Let 8 be an elastic body. Suppose the total work done by the

actual body forces and surface tractions acting on any part of 8 that occupies

a regular subregion of the region R occupied by 8 in the reference configuration

vanishes for every cyclic motion of the body. Then the nominal stress-re-

sponse function h satisfies (2.2) and B is hyperelastic. Further, the elastic

potential of B conforming to the normalization (1. 25) is given by

T'I‘h\:xs the fourth-order tensor RF(E;?S) is symmetric in the sense that

é-h (F;x

~F~~

)(B] =B+ B (Esx)A]

~ ~

for all second-order tensors A and B. ]




=

W(E;x) = |R(@U(E) +(1 - o)L;x) [ U(E) - 1]da v (E,x)€XR , (2. 4)

0
& provided U(F) is the symmetric positive-definite factor ofE in its right
! polar decomposition.
With a view toward a proof of this theorem we consider a homogeneous
motion of B8, defined by
L=Et) =E(t)x v x€R (t_stst)) , (2. 5)

. such that
Z d L
EMES (g stst)) , Bec([t,t,]) , E(t ) =E(t)) , E(t ) =Ft,) . (2.6)

Clearly, (2.5) represents a cyclic motion of 8 for every choice of the
deformation gradient F satisfying (2.6). From (2. 5), (2.6) and the power

identity (1. 15) in conjuction with (1.17), (1. 18), one draws

tl t
W, Je(t)dt=j _[ o(x ,t).g(t)dvx}dt. (2.7)
to t, &

Since the body is elastic, (l.22) holds and (2. 7) thus leads to

o

1

wo=[ { [BE®:0) E®)av Jat
s X

u-rr__,

t

1
=I{I£(E(t);,§) -E‘(t)dt}dvx ’ (2. 8)
@t o
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the interchange in the order of the two integrations being .legitimate because
of the assured smoothness of the function F and of the nominal stress-re- |
sponse function h. But, by hypothesis, the work Vo must vanish for every
regular region #CR and the integrand of the last volume integral in (2. 8) is

continuous on R. Consequently,

't

_[g(g(t);;s) F(t)dt =0 v x€R (2.9)

t

for every choice of the function g consistent with (2. 6).
At this stage we take t =0, t =2m and specialize F in (2.9) as follows.
Leti‘ be a nonsingular second-order tensor. Define F(t) (0<ts2w) in terms

of its components in an orthogonal cartesian frame by means of

0 o
Fu(t) =F“+ecost ’ Fzz(t) =F22+esint s

i (2.10)

Fj;(0) =r°*ij for (i,3) #(1,1) , (i,§) #(2,2) .

o
By continuity, since F is nonsingular, so is F(t) for 0<t<2w and all sufficiently
small positive values of the parameter € —say for 0<e<e,. The choice of

F adopted in (2. 10) thus conforms to (2. 6) in this range of €. Next, let

2m

Ie) =25 [n(E(t):x) (1)t v x€R (0<e<e,) @.11)
€0

with F(t) (0sts2m) specified by (2. 10).) Equation (2.9) now demands that

rNote accordingly that the integrand in (2.11) depends also on ¢.




T R e T T

] =BBL
]
2w
1 :
. I(e) =;J[-h1 1(E(t);x)sint +h,, (E(t);x)cost]dt =0
0 2.12)
L V X€R (0<e<e,). 7

The foregoing identity, upon an appeal to (2. 10) and to L'Hdpital's rule,

readily leads to

dh,, oh
1(0+) = [BFZZ a,l_l} s =0V XER . (2.13)
11 F22)(F,x)

Since ~§‘ here is any nonsingular tensor of order two, one thus infers that
(2.3) holds true for i=j=1, p=q=2. Obvious modifications of (2. 10)
confirm that (2. 3), and hence (2. 2), is valid for all admissible choices of
i,j and p, q.

It remains to be seen that 8 is hyperelastic and that the scalar-valued

function W given by (2. 4) supplies the normalized elastic potential of 8.
To this end it suffices to prove that W is twice continuously differentiable
on £xR and satisfies (1.23), (l.25).

If one sets

S(E,a) =aU(F) + (1l -a)] v FEL (0sa<l) , (2.14) ‘
then (2. 4) may be written as =
|

1

W(E:x) = [B(S(E, @):x) [U(E) - 11da v (E, X)€5xR . (2. 15)
0




We observe first that W(E;x) is indeed defined for every nonsingular

second-order tensor F and every X€R since bGCI(SXR) and because S(F,a)
is a symmetric positive-definite tensorl for every F€£ (0sa<l). We show
next that W is at least once continuously differentiable on ExR. In order
to confirm this claim it is evidently sufficient to prove that the components
of U(F) in an arbitrary orthogonal cartesian coordinate frame are con-
tinuously differentiable with respect to the components of F in the same

frame. For this purpose we note on the basis of (1. 32) that

Y=UE) =T, C=C(E) =E"E (2. 16)
‘ and let ui>0 denote the eigenvalues of U, whence C has the eigenvalues
uiz . Further, we designate the fundamental scalar invariants of U by
®,» SO that
N
(plztry :u1+u2+p.3>0 -
=2 (62 0)%- tr (UP)] = bty 1yt oty + gt >0 (2.17)
Przllerl ~ M ile o bl o g
Py=detU =u,MyU,>0 , 3

axld call Qi the corresponding scalar invariants of C, which also belongs to

)J for F€L. From the Cayley-Hamilton theorem one has

U0, 0% 0,U - 0,120

a7

(2.18)

1

Note that the eigenvalues of §(§,OQ are ap, +1-a>0, if M; are the positive
eigenvalues of U(F), which is ind for every F€L. The set of of all sym-
metric positive-definite tensors of order two is thus seen to be star-shaped
with respect to the tensor 1. In fact,«d can be shown to be convex.




and (2. 18), together with the first of (2. 16), furnishes

-1
U=UE =/C=(C+9,1) (@, +w;31) . (2.19)!

Moreover, (2. 17) and the analogous formulas for the scalar invariants of

C give

2 2 2
§1-cp1—2cp2>0 A §2=cp2-2cp1cp3>0 A §3-cp3>0 . (2.20)

From (2.16), the last of (2.17), as well as the last of (2.20), follows

93=/F = |detF| ; (2.21)

accordingly 95 is a continuously differentiable function of the components
ofE on £+ and on £_, and thus on & =£+U £_. On the other hand, the first two
of (2.20), with the aid of the implicit-function theorem, can be shown to
imply that Py @, are continuously differentiable functions of Ql' QZ' and
Ps- Therefore (2.19) now assures the desired smoothness of LJ(E) for
every F€£. According to a remark of John [4]2 the components of U(F)
can even be shown to depend analytically on the components of F.

We are now in a position to deduce the gradient WF(E;':\:') of the
presumed elastic potential defined in (2. 4). In doing so w~e shall for the
sake of brevity suppress the argument x. If T is any tensor of the second

order, one finds from (2. 14), (2.15) that

+*>
1The existence of the inverse (C +cp2{1‘)'l is agsured since QEJ. CDZ>0

imply C + o, 1¢€d.

%See Footnote No. 25 in [4].
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- SW(E)_
Folpll= Ty -

ij
' ok auU
rs (S) Pq
.f["’ oF 0, 6rs>+hpq(§)]Tij oF,, s (2, 22)
0

in which § and U abbreviate S(F, o) and U(F), respectively, 6rs is Kronecker's

delta, while ahrs(g)/anq stands for ahrs(}«:)/anq evaluated at ¥ =S. In

view of (2.14), U__-6__=0S__/da, so that (2.22) may be written as
rs rs rs

1 :
oh_ (S) &h_ (S)|2as
= 0 Pq rs

oo
8h_ (S) 8U
+as—2d +hpq(§)}Tij—maFij do.  (2.23)

The term within brackets in (2. 23) vanishes by virtue of (2. 3), and an

integration by parts — with attention to (2. 14) — justifies

ou
A'"|. = i

Next, from (1. 31), (1. 32) follows

8Rk BRk
L4 - _XPp 4R § .===—PR U +R. 6 ., (2.25)
s ip qj aFij ks sq " ip qj

where R =R(F) is the orthogonal factor of F in its two polar decompositions. :

Upon substitution from (2. 25) into (2. 24), one arrives at

1

lSince R =§LJ'
of U(E).

» the differentiability of R(F) is implied by the differentiability




OBy

T. WF(F) Rph (U)T, +T 'B_ERks i pq - (2. 26)

But, because of the orthogonality of R and on account of (1.21), one has

31:7‘k R'ks Rks

L, E : 2.2
OF; iep * Vaq"pq!¥) *Vpq"sq!Y) et

Accordingly, (8Rkp/ aFij>R'ks is skew-symmetric and Usthq(g) symmetric
with respect to (p,s). The second term in the right member of (2. 26) therefore

vanishes and thus
h(U) = T+h(E) , (2.28)

the last of the foregoing equalities being a consequence of the objectivity
relation (1. 34). Since (2.28) must hold for every choice of the tensor T, it
follows that W satisfies (1.23). Further, (1.23) and the hypothesis that
EECI(.CX R®) allow one to infer that WECZ(SXR), as required. In addition,
noting that U(l) =U(-1) =1, one confirms on the basis of (2. 4) at once that
W obeys the normalization conditions (l.25). This completes the proof

of Theorem 2.

The hypotheses of Theorem 2 can be weakened in one respect
without impairment of the conclusions: as is clear from the preceding proof,
it suffices to demand that the work Yo of the body forces and surface
tractions vanish merely for every ''simple-harmonic' cyclic motion of the
type presupposed in (2. 10).

Finally, we remark on the motivation for the anticipated represen-

tation (2. 4) of the elastic potential W. According to the objectivity-relation
’-

(1.35), one needs to construct W(+;x) only on the set« of all symmetric
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positive-definite second-order tensors. Now, as « ranges over the interval
[0,1], aU+(1 - @)1 traverses the ”stralght line segment" I from 1 to U,
which lies wholly mJ if U is m./ Bearing in mind also the required

normalization (1.25), it is thus natural to expect that

i

W(E;x) = W(U(E);x) = J'h(s x)+dS , (2.29)

~ A

~

with § =S(F, @) given by (2. 14) and I as the path of integration for the above
line-integral in the six-dimensional inner-product space associated with
+

. Upon converting this line-integral into a Riemann integral, one is led

to (2. 4). In this connection we observe with the aid of (2. 6), (2. 9) that
‘,5)3(5;?5) «dF =0 v x€R , (3. 30)

for every closed path of integration admitted by (2. 6) that lies entirely in

either of the two disjoint domains £+ or £_. If (3.30) were known to hold

for every merely piecewise smooth closed path in £+ or £_, one could
construct the desired elastic potential directly in terms of the appropriate

path-independent line integrals.
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